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Entanglement transitions in quantum dynamics present a novel class of phase transitions in nonequilibrium
systems. When a many-body quantum system undergoes unitary evolution interspersed with monitored random
measurements, the steady state can exhibit a phase transition between volume- and area-law entanglement.
There is a correspondence between measurement-induced transitions in nonunitary quantum circuits in d spatial
dimensions and classical statistical mechanical models in d + 1 dimensions. In certain limits these models map to
percolation, but there is analytical and numerical evidence to suggest that away from these limits the universality
class should generically be distinct from percolation. Intriguingly, despite these arguments, numerics on 1 + 1D
qubit circuits give bulk exponents which are nonetheless close to those of 2D percolation, with some possible
differences in surface behavior. In the first part of this work we explore the critical properties of 2 + 1D Clifford
circuits. In the bulk, we find many properties suggested by the percolation picture, including several matching
bulk exponents, and an inverse power law for the critical entanglement growth, S(t, L) ∼ L(1 − a/t ), which
saturates to an area law. We then utilize a graph-state-based algorithm to analyze in 1 + 1D and 2 + 1D the
critical properties of entanglement clusters in the steady state. We show that in a model with a simple geometric
map to percolation—the projective transverse field Ising model—these entanglement clusters are governed by
percolation surface exponents. However, in the Clifford models we find large deviations in the cluster exponents
from those of surface percolation, highlighting the breakdown of any possible geometric map to percolation.
Given the evidence for deviations from the percolation universality class, our results raise the question of why
nonetheless many bulk properties behave similarly to those of percolation.

DOI: 10.1103/PhysRevB.104.155111

I. INTRODUCTION

Recent years have seen the exciting discovery of novel
nonequilibrium phases of matter in many-body quantum sys-
tems. Quantum entanglement provides a natural framework
for the taxonomy of these nonequilibrium phases. A promi-
nent example of a nonequilibrium phase transition is the
many-body localization (MBL) transition [1–6], in which the
energy eigenstates switch from area-law entanglement in the
MBL phase to volume law in the chaotic phase. This singu-
lar change in the entanglement scaling means that the MBL
transition is an example of an entanglement transition.

For systems without energy conservation, random unitary
circuits have served as effective toy models of many-body
quantum chaos [7–10]. With the advent of noisy intermediate
scale quantum (NISQ) devices [11], the dynamics of pseudo-
random unitary circuits can now be realized in experimental
platforms, including superconducting qubits [12] and trapped
ions [13]. A many-body quantum system undergoing chaotic
unitary time evolution will typically thermalize, leading to
volume-law entanglement in the steady state [14]. However,
this thermalization and the concomitant volume law can be
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destroyed if the time evolution becomes nonunitary due to
randomly interspersed measurements. The steady state condi-
tioned on the measurement outcomes can then exhibit a phase
transition between volume- and area-law entanglement as a
function of the measurement rate, leading to the notion of
measurement-induced transitions [15–60].

These measurement-induced transitions occur in a wide
variety of models, including random circuits [15–35], Hamil-
tonian systems [36–44], and measurement-only models
[28,45,46,57], and they exhibit universal behavior. However,
the determination of the relevant universality classes has
proved to be a subtle issue. In certain 1 + 1D systems there
is a ‘dimensional correspondence,’ where the measurement-
induced transition in the 1 + 1D quantum system corresponds
to an ordering transition in a 2 + 0D statistical mechanical
model. Through these models, it has become clear that there
is an important link between measurement-induced transitions
and classical percolation, but the precise nature of this rela-
tionship is still unclear. For example, for 1 + 1D Haar-random
circuits there are two distinct mappings to 2D percolation: one
for the (n = 0)-Rényi entropy (Hartley entropy) [17] which
employs the minimal cut formalism [7] and another for the
(n � 1)-Rényi entropies [24,25] which uses the replica trick
to map the problem to 2D percolation in the limit of large local
Hilbert space dimension q → ∞.

However, there is both analytical [25] and numerical
evidence [21,26,61] to suggest that away from this limit
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FIG. 1. (a) Phase diagram for the measurement-induced tran-
sition in 2 + 1D local random Clifford circuits. For measurement
probabilities p < pc the steady state exhibits volume-law entan-
glement, while for p � pc the steady state is area-law entangled.
The entanglement transition and the purification transition coincide.
(b) The critical point of a d-dimensional circuit appears to be de-
scribed by bulk exponents from the (d + 1)D percolation. However,
entanglement cluster exponents do not match the percolation surface
exponents.

the universality class should be distinct from percolation.
Puzzlingly, despite this evidence, numerics on 1 + 1D Haar-
random and Clifford circuits give many bulk exponents which
are close to those of percolation. It has been suggested [25]
that this could be an indication that the finite q fixed point is
close to the percolation fixed point in the RG phase diagram.

Despite the results in 1 + 1D, it was not previously clear
whether this proximity to percolation holds in higher dimen-
sions. To address this, in the first part of our work we study the
critical properties of the measurement-induced transition in
2 + 1D Clifford circuits. First, we precisely locate the critical
point using the tripartite information I3 (see Sec. III), which
has been argued to be scale invariant at criticality, thereby
providing a good estimator of the critical probability pc.
Having fixed pc, we then find an inverse power law for the
critical entanglement dynamics, S(t, L) ∼ L(1 − a/t ), which
saturates to an area law [see Fig. 1(a)]. We provide a heuris-
tic justification for this scaling based on the ‘minimal cut’
prescription, which assumes a percolationlike picture. The
steady-state area-law scaling is consistent with the behavior
of conformal field theories in dimensions d > 2 [62,63].

We note that the accurate determination of the critical point
using I3 was important to correctly determine the critical scal-
ing, since even small deviations can result in scaling which
looks like S ∼ O(L log L) (cf. Ref. [33] and the discussion in
appendix B).

Next we analyze the connection between this
measurement-induced entanglement transition and quantum
error correction through the lens of the purification transition
[22–24,34,53], which is characterized by a transition in the
purification time of an initially maximally mixed state—in
the ‘mixed phase’ the state purifies in a time exponential in
system size L, whereas in the ‘pure phase’ it purifies in a time
polynomial in L. This purification transition can be viewed

FIG. 2. We employ a graph-state-based simulation algorithm
[64], where the data encoding the state consists of a graph G and
a list {Ci}Ld

i=1 of one-qubit Cliffords. The entanglement structure is
completely fixed by G. Entanglement clusters can be found by a
breadth-first search on G and are here highlighted in different colors.
In general the action of a Clifford gate corresponds to updating G and
the list of one-qubit Cliffords. Here we illustrate the simple case of
a CZ gate acting on two qubits whose one-qubit Cliffords commute
with CZ; in this case the CZ gate simply toggles an edge between the
qubits.

as a transition in the quantum channel capacity density of the
hybrid quantum circuit, which governs whether the circuit
can be used to generate a finite-rate quantum error-correcting
code—the code rate is finite in the mixed phase and goes
to zero as one approaches the pure phase. In other words,
these hybrid quantum circuits can form emergent quantum
error-correcting codes which protect against errors given
precisely by the measurements involved in the circuit.

It is not a priori obvious that these two measurement-
induced transitions should coincide: The entanglement transi-
tion concerns spatial correlations in a quantum state at a fixed
time, whereas the purification transition concerns correlations
between quantum states at different times [23]. Their coinci-
dence in 1 + 1D was explained by the fact that the 2 + 0D
statistical mechanical model governing the purification tran-
sition is the same as that of the entanglement transition, just
with different boundary conditions [24,26]. In these models,
the time coordinate of the physical circuit plays the role of
imaginary time in the stat-mech model, giving an emergent
symmetry between space and time [26]. In higher dimensions,
however, the symmetry between space and time can be broken
quite naturally. Our precise handle on the critical point allows
us to demonstrate that the purification transition in 2 + 1D
Clifford circuits continues to coincide with the entanglement
transition, suggesting this phenomenon may be generic in all
dimensions.

The coincidence of these two transitions then allows us to
utilize the entangling and purifying dynamics of entangled
ancilla qubits to extract various bulk and surface critical ex-
ponents of the transition in 2 + 1D Clifford circuits and to
provide evidence of conformal symmetry at the critical point
(see Sec. IV). The bulk exponents extracted in this way are
within error bars of 3D percolation (see Table I). Interestingly,
we do observe small deviations from percolation in certain
surface critical exponents (see Sec. IV). This is similar to the
behavior observed numerically in 1 + 1D circuits with qubits
[21,26,34].

We perform our simulations using a graph-state-based al-
gorithm (see Fig. 2) [64], which provides easy access to
geometric information about the entanglement structure—the
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TABLE I. Critical exponents of the measurement-induced transi-
tion in hybrid 1+1D and 2+1D random Clifford circuits, compared
with those of 1D, 2D, and 3D percolation (1D P, 2D P, and 3D
P, respectively). Exponents which appear to differ from percolation
are highlighted in red. Those exponents which describe the scaling
of entanglement clusters are labeled by the subscript ec and are
compared with the bulk and surface exponents for percolation. The
exponents for 1+1D Clifford circuits, excluding those describing
entanglement clusters, are taken from Ref. [21].

Quantum circuits Classical percolation

Exponent 1+1D C 2+1D C 1D P 2D P 3D P

ν 1.24(7) 0.85(9) 1 4/3 = 1.333 0.8774
η 0.22(1) −0.01(5) 1 5/24 = 0.208 − 0.047
η‖ 0.63(1) 0.85(4) 1 2/3 = 0.667 0.95
η⊥ 0.43(2) 0.46(8) 1 7/16 = 0.438 0.45
β 0.14(1) 0.40(1) 0 5/36 = 0.139 0.43
βs 0.39(2) 0.74(2) 0 4/9 = 0.444 0.85
z 1.06(4) 1.07(4)

Entanglement clusters

βec/ν −0.009(2) 0.00(2)
βs/ν 0 1/3 = 0.333 0.975
β/ν 0 5/48 = 0.104 0.49
γec/ν 0.95(1) 1.84(2)
γ1,1/ν 0 1/3 = 0.333 0.049
γ /ν 1 43/24 = 1.792 2.09
τ 2.04 1.98(1) 2 187/91 =2.055 2.19

entanglement is completely fixed by the underlying graph.
This allows us to employ graph-theoretic clustering tools to
analyze entanglement clusters in the steady state (see Sec. V).
If we naively assume that the critical point has a simple
geometric map to percolation, then the critical properties of
these entanglement clusters should be governed by the sur-
face exponents of percolation, given that the clusters exist
on the final time slice of the (d + 1)-dimensional bulk. To
confirm this naive expectation, we first analyze entanglement
clusters in the projective transverse field Ising model, which
is a measurement-only Clifford model known to have a simple
geometric map to percolation [41]. There we indeed find crit-
ical scaling of the entanglement clusters consist with surface
percolation exponents.

However, moving on to the Clifford circuits, we find that
both in 1 + 1D and 2 + 1D, the entanglement clusters are
governed by exponents significantly different from those of
surface percolation [see Fig. 1(b)]. We interpret this as further
evidence that the measurement-induced transition in qubit
Clifford circuits is in a different universality class to perco-
lation. Lessons from Haar-random circuits also tell us that,
even when a map to percolation does exist, it may be highly
nontrivial in nature, occurring for example only in a replica
limit [24,25]. The deviation from surface percolation expo-
nents in the Clifford models indicates that, even if a map to
percolation does exist in certain limits, it may not have such a
simple geometric interpretation as do the analogous maps for
the projective transverse field Ising model [41] and the Hartley
entropy in Haar-random circuits [17].

FIG. 3. (a) The sublattice index determines which sublattice of
qubits, denoted by • or ◦, are used as the ‘controls’ for the Clifford
gates in that time step. (b) Given a choice of sublattice index, the
clock index determines in which direction each Clifford gate acts
relative to the control. (c) The geometry used to calculate the tripar-
tite information I3(A : B : C). (d) One period of the gate sequence on
a 2 × 2 lattice with periodic boundary conditions and time moving
in the vertical direction. Different colors label different values of the
clock index. (e) Unit cell of the underlying lattice structure, obtained
by contracting each Clifford gate into a point.

II. METHODS

A. Model

In Secs. III and IV we study a 2 + 1D model of local
random Clifford dynamics interspersed with random projec-
tive measurements. Each time step consists of a round of
random two-qubit Clifford gates with disjoint support applied
to nearest neighbors, followed by a round of projective mea-
surements in the σ z basis, where each qubit has probability p
of being measured. The gates are drawn uniformly over the
whole two-qubit Clifford group. The pattern of gates applied
at a given time step is determined by two indices: a ‘sublattice
index,’ which takes values in Z2, and a ‘clock index,’ which
takes values in Z4. Arranging the qubits in an L × L square
lattice with periodic boundary conditions, the sublattice index
determines which sublattice of qubits will act as the ‘controls’
for the Clifford gates [see Fig. 3(a)]. Given a choice of sub-
lattice, the clock index then determines which direction the
Clifford gates act in relative to the control qubits. The values
0, 1, 2, and 3 correspond to gates acting up, right, down, and
left from the control qubits, respectively [see Fig. 3(b)]. At the
nth time step, the sublattice index has the value n (mod 2),
and the clock index has the value �n/2	 (mod 4), so that the
overall gate sequence has period 8 [see Fig. 3(d)]. Since the
support of the Clifford gates changes with each time step,
certain quantities that depend on making a ‘cut,’ such as
the entanglement entropy of a given region, exhibit a mild
periodicity related to how often the gates cross the cut. To
get well-defined steady-state values, we perform a window
average over a window matching the period of the oscillations
(equal to four time steps in this case)—all quantities in this
paper have been averaged in this way.

It is worth noting that this choice of gate protocol is by
no means unique. On grounds of universality, we expect the
main effect of a different choice of local quantum circuit is
to change the critical measurement probability pc, with the
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critical exponents unaffected. One alternative was explored
in Ref. [33], which used four-local gates instead of our two-
local gates. For rank-1 measurements, they observe a critical
probability of pc ≈ 0.54, which is roughly the square root
of our estimated value of pc ≈ 0.312(2). They do observe a
different correlation length exponent ν, on which we comment
in Sec. III.

In Sec. V, as well as studying the 2 + 1D Clifford model
we have just outlined, we also study a 1 + 1D Clifford model.
This is identical to that studied in many previous works
studying the 1 + 1D problem and can be thought of as be-
ing controlled by a single ‘sublattice index,’ resulting in a
‘brick-wall’ structure of alternating layers of Clifford gates
interspersed with random projective measurements.

B. Simulation method

To simulate the hybrid Clifford dynamics, we used a graph-
state-based algorithm [64]. This makes use of the remarkable
fact that every stabilizer state can be represented as a graph
state, up to the action of some one-qubit Cliffords [65]. Sim-
ulation of stabilizer states then takes the form of updating the
underlying graph structure and the list of one-qubit Cliffords,
which can be done in polynomial time.

In more detail, graph states are a class of pure quantum
states whose structure is determined entirely by an underlying
graph G = (V, E ). Each graph vertex v ∈ V corresponds to
a qubit, and the graph edges E determine the preparation
procedure for the state. To prepare the graph state |G〉, we
start from the initial product state |ψ0〉 = [(|0〉 + |1〉)/

√
2]⊗N ,

where N is the number of qubits, and then apply a CZ gate
to each pair of qubits which are connected by an edge in the
graph G.

Stabilizer states are the states which can be prepared from
the initial product state |0〉⊗N by acting with gates from the
N-qubit Clifford group CN . The set of stabilizer states is larger
than that of graph states but not by much: All stabilizer states
can be written as a graph state, up to the action of some
gates from the one-qubit Clifford group C1 (which contains
only 24 gates, up to phase). Single qubit gates are then trivial
to perform, taking 	(1) time. Two-qubit Cliffords take time
O(d2), where d is the maximum vertex degree of the qubits
involved in the gate, and single-qubit Z-basis measurements
take time O(d ). This makes graphs with low connectivity,
which can roughly be identified with low entangled states,
easier to simulate.

To wit, the graph structure completely determines the
entanglement of the corresponding quantum state. Given a
bipartition of the system into subsystems A and B, the (Rényi
or von Neumann) entanglement entropy SA is given by

SA = rank(
AB), (1)

where 
AB is the submatrix of the adjacency matrix charac-
terizing edges between subsystems A and B [65]. We note
that for stabilizer states all Rényi entropies (including the von
Neumann entropy) are equal [66].

To simulate an initially mixed state ρ, we introduce an
auxiliary system to obtain a purification of ρ. We then perform
time evolution on the resultant pure state, with the quantum
circuit acting as the identity on the purifying system. For the

maximally-mixed initial state on N qubits, ρ = 1/2N , this
corresponds to the pure state simulation of N Bell pairs, where
the system dynamics acts only on one half of the Bell pairs.
This purification simulation method does mean that N-qubit
mixed states are harder to simulate than N-qubit pure states,
but not as hard as 2N-qubit pure states, since the purifying
qubits typically have a lower vertex degree than the original
qubits.

C. Transition diagnostics

As well as the entanglement entropy SA, we also study the
tripartite mutual information

I3(A : B : C) = I2(A : B) + I2(A : C) − I2(A : BC), (2)

where I2(A : B) = SA + SB − SAB is the mutual information. It
is easy to see that for pure states, given a partition of the sys-
tem into four subsystems, the tripartite information of three of
the subsystems does not depend on the choice of subsystems,
so from now on we will simply write I3 ≡ I3(A : B : C). We
calculate I3 for the partition shown in Fig. 3(c). Notice that a
vertical slice of this geometry gives a circle divided into four
equal sections. In 1 + 1D this partitioning was successfully
employed to study the entanglement transition because, at
least within the minimal cut picture [7], it cancels out any
boundary terms corresponding to the entanglement cost of
a domain wall traversing from the circuit boundary to the
percolating cluster in the bulk of the circuit [21,23]. This then
suggests that in 1 + 1D, I3 is extensive in the volume-law
phase, O(1) at criticality, and zero in the area-law phase. In
2 + 1D, we argue that, for this particular choice of geome-
try, I3 remains O(1) at criticality, with its overall behavior
described by

I3(p, L) =

⎧⎪⎨
⎪⎩
O(L2), p < pc

O(1), p = pc

0, p > pc

. (3)

This implies that the values of I3(p, L) should coincide for
different system sizes at p = pc, allowing for reliable location
of the critical point. We further discuss our choice of geometry
for I3 in Appendix B.

III. ENTANGLEMENT TRANSITION

To accurately estimate the location of the critical point, it
is necessary to determine the correct scaling of I3. To that end,
we must rule out plausible scalings which are different from
the one proposed in Eq. (3). We have also investigated the pos-
sibility that I3 ∝ L at the critical point, which would suggest
that the values of I3(p, L)/L should coincide at p = pc. We
detail evidence against this scaling form in Appendix A.

The steady-state values of I3(p, L) are plotted in Fig. 4.
Given the scaling in Eq. (3), the curves should coincide at the
critical point. To determine the critical point and the correla-
tion length exponent ν we make the finite-size scaling ansatz

I3(p, L) ∼ F [(p − pc)L1/ν], (4)

where F [·] is a single-parameter scaling function. We deter-
mine the optimal parameters by minimizing a cost function
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FIG. 4. The steady state I3 as a function of (p − pc )L1/ν , where
pc ≈ 0.312(2) and ν ≈ 0.85(9). The inset shows the uncollapsed
data. This dataset consists of 5 × 104 circuit realizations.

ε(pc, ν) which measures deviations of a point from a linear
interpolation between its neighbors [21,67] (see Appendix B
for details). The resulting data collapse is of excellent quality,
with pc ≈ 0.312(2) and ν ≈ 0.85(9), where the error bars
correspond to the range of values for which the cost function
is less than two times its minimum value. We note that this
value of ν is reasonably close to the 3D percolation value
of νperc ≈ 0.877 [68], suggesting that the close relationship
between exponents of the entanglement transition and perco-
lation, even at low local Hilbert space dimension, continues
to hold in 2 + 1D. We also note that our value of ν is sig-
nificantly larger than that reported in Ref. [33] (ν ≈ 0.67); we
attribute this to the fact that we extract ν by a data collapse not
of the half-plane entanglement but of the tripartite informa-
tion, which coincides for different system sizes at the critical
point and so provides a much more accurate estimator of the
critical point. A similar scenario occurs in 1 + 1D [21]. We
discuss this further in Appendix B.

Let us briefly comment on the value of pc ≈ 0.312 ob-
tained for the critical measurement probability. This value
coincides with the threshold for site percolation on the sim-
ple cubic lattice [69], but as far as we are aware this is a
coincidence; in fact our gate model maps to the lattice shown
in Fig. 3(e), which exhibits a bond percolation transition at
pc = 0.3759(2). We expect other gate models to give different
values of pc (see Ref. [33]) but the same critical exponents. It
is also interesting to compare our value of pc to the upper
bound derived in Ref. [22], which modeled the volume-law
phase as forming a dynamically generated nondegenerate
quantum error-correcting code, allowing them to apply the
quantum Hamming bound. The bound on pc depends only
on the local Hilbert space dimension q (not on the spatial di-
mension) and for q = 2 gives pc � 0.1893. While this bound
was satisfied by 1 + 1D Haar-random and Clifford circuits
(pc ≈ 0.17 [21]), here we see that it is strongly violated in
2 + 1D Clifford circuits. A similar violation has also been
observed in all-to-all models [23], where it was pointed out
that if these hybrid dynamics which violate this upper bound
are to generate quantum error-correcting codes, these codes

must be degenerate. Finally, we note that the value of I3

at criticality, I2+1D
3 (pc) = −0.47(8), is within error bars of

the value for 1 + 1D Clifford circuits, I1+1D
3 (pc) = −0.56(9)

[21], suggesting the possibility that at criticality I3 could reach
an O(1) constant which is independent of dimension.

Having established the location of the critical point via
finite-size scaling of I3, we study the scaling properties of the
entanglement entropy in the different phases. We propose the
following scaling for the 2 + 1D circuit:

S(p, L) ∼

⎧⎪⎪⎨
⎪⎪⎩

L
(
1 − a

ξ

) + A L2

ξ 2 , p < pc,

L, p = pc,

L
(
1 − a

ξ

)
, p > pc,

(5)

where ξ = |p − pc|−ν is the correlation length and a, A are
unknown constants. Such scaling implies the data collapse of
the entropy is possible using a similar ansatz as in the 1 + 1D
circuit [17,19],

S(p, L) − S(pc, L) = F [(p − pc)L1/ν], (6)

where F [·] is a single-parameter scaling function, depending
only on L/ξ .

In order to see the origin of this proposed scaling form,
we draw from the similarity to the 1 + 1D case, where the
behavior of entropy can be intuitively understood by consid-
ering the Hartley entropy S0. For Haar random circuits S0 can
be mapped exactly to classical percolation in 2D [17]: Each
projective measurement cuts a bond of the underlying lattice
and prevents percolation; Hartley entropy of a region is then
calculated as the minimal number of cuts needed to separate
said region at the final-time boundary from the rest of the cir-
cuit. This mapping extends naturally to d + 1D circuits, where
S0 corresponds to a minimal-cut d-dimensional membrane.
Near criticality, the ‘nodes-and-links’ picture of percolation
[70,71] gives an insight into the scaling properties of S0 (see
Fig. 5) and shows two important contributions: from the bulk
and from the edge.

For p < pc, percolation in the bulk of the circuit is possible
due to unbroken bonds forming a ‘wire frame’ consisting of
dense clusters of bonds (nodes) connected by long chains of
unbroken bonds (links). Each cell in the frame is of the size
of the correlation length ξ and, if traversed by the minimal-
cut membrane, gives a contribution of O(1) to the entropy
[see Figs. 5(a) and 5(c) for 2D and 3D examples]. Count-
ing the number of cells results in the bulk of the circuit
contributing ∼(L/ξ )d to S0, the source of the volume-law
scaling.

The second relevant contribution comes from the final-time
boundary of the circuit [see Fig. 5(b)]. This edge cuts through
not only the links and nodes discussed above but also through
smaller structures, dead ends, and other structures normally
unconnected to the main mesh. This results in the minimal-cut
membrane having to generically cut through a large number
of small mesh cells right next to the boundary, then through
layers of consecutively larger cells, until the cell size reaches
ξ [see Fig. 5(d)]. Assuming a geometric progression of cell
sizes with common ratio r > 1 [17], the number of cells in
the ith layer is ∼(L/ri )d−1, while the total number of layers
is ∼ logr ξ . We then arrive at an important result: The total
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FIG. 5. ‘Nodes and links’ picture of percolation. (a) An exam-
ple of percolation in the bulk of a 2D system. Percolating bonds
cluster within nodes (black dots) connected by links (thick black
lines), forming a ‘wire frame.’ Average distance between nodes is
the correlation length ξ . There are also smaller structures on the
links (dark red), dead ends (red), and structures unconnected to
the frame (orange). Minimal-cut path (blue dotted line) can be de-
formed to only cut through the links (cuts indicated by transparent
blue circles), causing an O(1) contribution to the entropy. (b) The
same example but in the presence of the final-time boundary. Every
structure touching the edge is promoted to be part of the frame.
Minimal-cut path generically starts within a smaller structure of size
O(1), having now to traverse through larger and larger chambers in
order to reach structures of size ξ . (c) Percolation in the bulk of a 3D
system (showing only nodes and links for simplicity). Minimal-cut
membrane can be deformed, contributing O(1) to the entropy per
one cell of the frame. (d) Flattened minimal-cut membrane, showing
all the necessary cuts. Near the edge, the membrane traverses layers
of structures of increasingly larger sizes (with approximate common
ratio r).

contribution from the boundary for 1 + 1D is ∼ log ξ , while
for higher dimensions it is ∼(1 − a/ξ d−1)Ld−1. This term is in
general responsible for the area-law scaling, but at the critical
point p = pc (when ξ → L) it results in logarithmic scaling
in 1 + 1D, and area-law scaling in higher dimensions.

We can also use this analysis to predict the time de-
pendence of the entanglement entropy at criticality. For
intermediate times 1 � t � min(ξ, L), the circuit is shallow,
and the minimal cut membrane will pass from the final time
boundary to the initial time boundary. This is because at t = 0
the system is in a product state and the membrane can traverse
the initial boundary freely. Hence, the main contribution to the
entropy will be from summing over progressively larger cells
up until the circuit depth of t , i.e., the number of layers is now

FIG. 6. Dynamics and steady-state behavior of the half-plane
entanglement S(L/2 × L) in the volume-law (p < pc), critical (p =
pc), and area-law (p > pc) phases. The left column shows the dy-
namics for L = 32, with St ∼ Lt for p < pc, St ∼ L(1 − a/t ) for
p = pc, and St saturating in O(1) time for p > pc. The right column
shows the steady-state scaling, with S∞(L) ∼ O(L2) for p < pc, and
S∞(L) ∼ O(L) for p � pc. We use p = 0.1, p = 0.312, and p = 0.4
for the volume-law, critical, and area-law plots, respectively.

only ∼ logr t . Thus, the geometric sum
∑logr t

i (L/ri)d−1 gives

S(t, L) ∼ Ld−1
(

1 − a

td−1

)
(7)

for some O(1) constant a. For the special case of d = 1 the
sum reduces to the logarithmic scaling S(t, L) ∼ log t [17],
but in higher dimensions the growth takes the form of an
inverse power law in time, eventually saturating to an area
law. We can write this as a scaling form S(t, L) − bLd−1 ∼
f (t/L) with f (x) ∼ −x−(d−1) as x → 0 and f (x) → const.
as x → ∞, consistent with a dynamical critical exponent of
z = 1 [see also Fig. 7(b) and Fig. 15(c)].

Figure 6 presents a summary of our results for the en-
tanglement entropy, showing an excellent agreement with the
scaling ansatze in Eqs. (5) and (7). Notably, in the steady state
we observe area-law scaling at the critical point (consistent
with the recent results of Ref. [57]), possibly with subleading
additive logarithmic corrections, but not with multiplicative
logarithmic corrections (L log L), as implied in Ref. [33]. We
note, however, that if one assumes a lower transition point
(p ≈ 0.29), numerics may seem like a L log L behavior for
small system sizes, suggesting that correctly locating the crit-
ical value pc is crucial to making any statements on scaling of
entropy at criticality. As explained above, data collapse of I3

pinpoints the precise value of pc, allowing us to determine the
correct critical scaling behavior.

Moreover, at these system sizes we cannot directly observe
the presence of a subleading additive log L term, but we also
cannot rule it out since it may have a small coefficient. Such
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FIG. 7. (a) The entropy density of an initially maximally mixed
state after evolving for a time t = 4L. The black dashed line shows
the function A(pc − p)2ν with A ≈ 11.7, and pc and ν determined
from finite-size scaling of I3. At these system sizes there is still
some finite-size drift in the data, but it seems to be approaching
the curve described by A(pc − p)2ν . (b) Purification dynamics at
p = pc. The data collapse onto a single curve when plotted in terms
of t/L, indicating a dynamical critical exponent of z ≈ 1 [the optimal
fitted value is z = 1.07(4)]. Nonuniversal early-time dynamics are
excluded from the fit.

a subleading additive log L is predicted by a calculation from
capillary wave theory [50,72] which evaluates the free energy
cost of inserting an Ising domain wall membrane in the quan-
tum circuit’s spacetime bulk, with the boundary condition
that at the boundary of the circuit corresponding to the final
time the membrane is pinned to the region for which one
wants to calculate the entanglement entropy. The subleading
log L then corresponds to an entropic contribution to the free
energy from ‘thermal’ fluctuations of the membrane at finite
‘temperature’ (here corresponding to nonzero measurement
probability). In general, the appearance at criticality of an area
law with additive log corrections is reminiscent of the be-
havior of higher-dimensional conformal field theories [62,63].
There is also the possibility of a sublinear power-law correc-
tion, analogous to the ∼L0.38 correction observed numerically
in 1 + 1D Clifford circuits [50], which could indicate a more
complex entanglement domain wall structure than the simple
Ising structure that predicts the logarithmic correction.

Finally, regarding the critical entanglement dynamics, we
note that one must be careful to distinguish the inverse
power-law behavior of Eq. (7) from logarithmic growth. In
appendix C we provide a plot of the critical entropy dynamics
at L = 92 on a log scale, which demonstrates that the growth

is not logarithmic in time, and provide further evidence for the
inverse power-law scaling.

IV. PURIFICATION TRANSITION

In this section, we investigate the purification transition and
demonstrate that it coincides with the entanglement transition
studied in Sec. III. To do so we study the entanglement en-
tropy density S/L2 of a maximally mixed initial state after
being time evolved for time t = 4L. In the ‘pure phase,’ the
state purifies in time linear in system size L, implying S/L2 →
0 for t ∝ L but sufficiently large (t = 4L suffices), while in
the ‘mixed phase’ the purification time is exponential in L,
so that after the time t = 4L we expect the entropy density
to remain finite. Figure 7 shows the entanglement entropy
density as a function of measurement probability p. The en-
tropy density vanishes close to the critical point pc ≈ 0.312
of the entanglement transition. For these system sizes, there
still exists some appreciable finite-size drift, but it appears to
be such that the entropy density vanishes increasingly close
to pc ≈ 0.312 as the system size increases. The black dashed
curve shows the function A(pc − p)2ν , with A a constant and
pc and ν fixed from the entanglement transition. The exponent
2ν is motivated by the scaling of the entanglement entropy in
Eq. (5), where the O(L2) term controlling the entropy density
appears with the coefficient ξ−2 ∼ (pc − p)2ν . The conver-
gence of the entropy density to the scaling form A(pc − p)2ν

therefore provides strong evidence that the purification tran-
sition indeed coincides with the entanglement transition and
that the estimation of ν in the previous section is correct.

Having established the coincidence of these two tran-
sitions, we now extract further critical exponents of the
transition using the local order parameter proposed in
Ref. [34] of the entanglement entropy of an ancilla qubit
entangled with the system but not directly acted on by the
circuit dynamics. First, we extract the anomalous scaling ex-
ponents η, η‖, and η⊥ controlling the power-law decay of
bulk-bulk, surface-surface, and surface-bulk two-point corre-
lation functions at criticality. In percolation, these quantities
control the probabilities that two distant sites, living either
in the bulk or on the surface, belong to the same cluster. To
determine these exponents we study the dynamics at p = pc of
the mutual information between two ancilla qubits separated
by a distance L/2 [21], which provides an upper bound on
connected correlation functions [73]. The ancilla qubits are
entangled with the system at a time t0. We use different values
of t0 and different boundary conditions to extract the different
exponents: {t0 = 2L, periodic} for η, {t0 = 0, periodic} for
η‖, and {t0 = 2L, open} for η⊥. Conformal symmetry z = 1
at the critical point [see Fig. 7(b)] implies that in D space-
time dimensions the mutual information between two qubits
separated by a distance r should assume the scaling form

I2(t, r) ∼ 1

rD−2+η
G

[ t − t0
r

]
, (8)

where G[·] is a single-parameter scaling function, and the
exponent depends on the choice of t0 and boundary conditions,
as outlined above. Thus in this 2 + 1D spacetime circuit, we
can extract the exponents by performing data collapses of
L1+ηI2[(t − t0)/L, L/2], as shown in Fig. 8. For the bulk-bulk
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FIG. 8. Extraction of the anomalous scaling exponents η ≈
−0.01(5), η‖ ≈ 0.85(4), and η⊥ ≈ 0.46(8), shown in (a), (b), and
(c), respectively, via data collapse at p = pc of the mutual informa-
tion I2 between two ancilla qubits which are entangled at time t0 with
two system qubits a distance L/2 apart. The different exponents are
extracted using different boundary conditions and different values
of t0 (see main text). The insets show the uncollapsed data. The η

dataset consists of 2.5 × 105 circuit realizations, while the η‖ and η⊥
datasets each consist of 106 circuit realizations.

exponent η and the surface-bulk exponent η⊥, we obtain the
values η ≈ −0.01(5) and η⊥ ≈ 0.46(8), which are within
error bars of the 3D percolation values ηperc = −0.047 and
η⊥,perc = 0.45 [74]. We note in passing that the data collapse
for η⊥ is not as good quality as that for η, resulting in larger
error bars using the methodology described in Appendix B.
However, there does not appear to be a systematic drift with
increasing system size. We attempted to improve the collapse
quality by using a large number of circuit realizations (106

for η⊥), but some discrepancy is still evident. This could
possibly be a result of η⊥ being particularly sensitive to any
miscalibration of the critical point pc, despite the precision to
which we have pinpointed pc in this work.

Moving on to the surface-surface exponent η‖, we obtain
the value η‖ ≈ 0.85(4). This is not within error bars of the
3D percolation value η‖,perc = 0.95, indicating a possible dif-
ference in surface behavior. The error bars on our exponent

FIG. 9. Extracting the exponents β and βs using the entropy
Sancilla of an ancilla qubit which is maximally entangled with a bulk
qubit at a time t0, and then further evolved for a time t = 2L. (a) The
bulk exponent β is extracted using t0 = 2L. The black dashed curve
shows the function B(pc − p)β where B ≈ 3.2 and β ≈ 0.40(1).
(b) The surface exponent βs is extracted using t0 = 0. There the
black dashed curve shows the function C(pc − p)βs where C ≈ 4.6
and βs ≈ 0.74(2). In both cases, pc ≈ 0.312 is fixed by finite-size
scaling of I3. This dataset consists of 106 circuit realizations.

estimates capture only the statistical error, so it is possible that
there are still significant finite-size corrections. However, we
note that a similar deviation in η‖ (and in η⊥) was observed in
1 + 1D Haar-random circuits (though not in Clifford circuits)
[21]. In this case, a deviation only in η‖ would not be con-
sistent with the scaling relation 2η⊥ = η + η‖, but the error
bars on our estimates are large enough that there could also be
small deviations in η⊥ that provide the necessary contribution
to restore the scaling relation.

Next, we extract the exponents β and βs controlling the
behavior of the order parameter as a function of p. In percola-
tion, β controls the probability P(p) ∼ |p − pc|β that a site in
the bulk will belong to the infinite percolating cluster, while βs

does the same but for a site on the surface. To extract these ex-
ponents we study the entanglement entropy of an ancilla qubit,
entangled with the system at time t0 = 2L for β and time
t0 = 0 for βs, and subsequently time evolved for a further time
t = 2L. Figure 9 shows the ancilla entropy Sancilla as a function
of measurement probability p for the cases relevant to β and
βs. For the bulk exponent β, the data are well described by the
function B(p − pc)β with B a constant, pc ≈ 0.312 fixed by
the entanglement transition, and β ≈ 0.40(1). This is close to
the 3D percolation value of βperc ≈ 0.43. However, for the sur-
face exponent βs, the data are well described by the function
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C(pc − p)βs , where βs ≈ 0.74(2). This is somewhat different
from the 3D percolation value of βs,perc ≈ 0.85. The value of
βs is quite sensitive to the value of pc; we estimate that to
obtain βs ≈ 0.85 one would have to have pc ≈ 0.318, which
does not seem tenable given the clear crossing point in I3 (see
inset of Fig. 4). There are also some small deviations from the
scaling around p ≈ pc, but these seem to decrease with system
size. We therefore tentatively conclude that the surface critical
exponent βs may also differ from 3D percolation. The fact that
we observe both the surface exponents βs and η‖ to be smaller
than the corresponding values from percolation is consistent
with the scaling relation 2βs = ν(D − 2 + η‖), where D = 3
is the number of spacetime dimensions.

V. ENTANGLEMENT CLUSTERS

Finally, with the aim of further exploring connections with
percolation, we investigate entanglement clusters in the steady
state. Working within the graph-state framework for simu-
lating stabilizer states, we define an entanglement cluster in
the graph-theoretic sense: Two spins are in the same cluster
if there is a connected path between them (see Fig. 2 for an
example). We will mainly study the size s of the clusters,
defined for a given cluster as the number of spins it contains.
This is clearly quite a coarse-grained notion of entanglement,
since different spins in the same cluster can be entangled by
different amounts. Nonetheless, it provides some insight into
how multipartite is the steady-state entanglement.

If we assume that there is a percolationlike statistical me-
chanical model controlling the critical point, then naively
one would expect the scaling of the entanglement clusters
to be controlled by surface exponents of (d + 1)-dimensional
percolation. We will focus on two quantities, the largest entan-
glement cluster size smax, and the mean entanglement cluster
size s. Within the percolation language, these correspond to
the ‘surface area’ of the infinite percolating cluster (assum-
ing the largest surface cluster coincides with the largest bulk
cluster), and the mean ‘surface area’ of clusters with at least
one site on the surface, where by ‘surface area’ we mean the
number of sites in the cluster that lies on the surface. In a
(d + 1)-dimensional percolation model with finite linear ex-
tent L, these should scale as smax/Ld ∼ L−βs/ν and s ∼ Lγ1,1/ν ,
respectively.

To check this naive expectation, we first analyzed the scal-
ing of entanglement clusters within the projective transverse
field Ising model (PTFIM), as discussed in more detail in
Appendix D. This is a measurement-only model exhibiting an
entanglement transition which is known to be in the percola-
tion universality class [41]. Conveniently, it also only involves
Clifford operations, so it can be simulated using the graph-
state framework and therefore provides a useful testbed for
the scaling properties of the entanglement clusters. The results
are summarized in Fig. 16, where we show data for the mean
cluster size and largest cluster size for the PTFIM in both
1 + 1D and 2 + 1D. In 1 + 1D, these quantities both scale as
power laws with exponents closely matching the expected val-
ues from surface 2D percolation. In 2 + 1D, the largest cluster
size also follows a power law closely matching the expectation
from surface 3D percolation. The mean cluster size appears to
have a slightly larger exponent than expected, but it is possible

that this discrepancy is due to significant finite-size effects,
as we discuss in more detail in Appendix D. Nonetheless,
taken as a whole we believe these results provide reasonable
evidence to suggest that if the critical circuit dynamics has a
simple geometric map to percolation, as in the PTFIM, then
we should expect the scaling of the entanglement clusters to
be controlled by surface exponents of (d + 1)-dimensional
percolation.

In fact, we will see that the critical properties of the en-
tanglement clusters in the steady state of the random Clifford
circuits scale with exponents quite distinct from those of
surface (d + 1)-dimensional percolation. Several of them are
controlled by exponents close to those of bulk d-dimensional
percolation, but it is possible this could be a coincidence.
We offer two possible interpretations of these results. First,
this could be further evidence that the measurement-induced
transition in random Clifford circuits on qubits is in a distinct
universality class to percolation, which is the conclusion of
several recent studies [21,26,61]. Second, lessons from Haar-
random circuits [25] suggest that, even if a map to percolation
does exist in certain limits, it may be highly nontrivial, and in
particular may not have a simple geometric interpretation as
for the PTFIM and the Hartley entropy in Haar circuits [17].
As a consequence it is less obvious that the critical proper-
ties of the entanglement clusters in random Clifford circuits
should be controlled by the surface exponents βs and γ1,1 that
are relevant for models that do have a simple geometric map
to percolation.

Before we go into more detail, we make a brief comment
about notation. As we just discussed, in the absence of a
simple geometric map to percolation, it is not obvious that
the mean and largest cluster sizes should be controlled by
the surface exponents γ1,1 and βs as they are in the PTFIM.
For this reason we will label exponents for the entanglement
clusters with the subscript ec and do not claim that they should
necessarily match the exponents γ1,1 and βs in all models.

To find the entanglement clusters, we employ a breadth-
first search on the graph storing the steady state [75].
Figure 10 shows the behavior of the average cluster size s =∑

s nss2/
∑

s′ ns′s′, where the cluster number ns is the number
of clusters of size s normalized by the system volume Ld .
Note that this quantity measures the average cluster size if
sites are randomly selected with equal probability—if instead
clusters are randomly selected with equal probability then the
corresponding average is

∑
s nss/

∑
s′ ns′ . Assuming critical

scaling of the form s ∼ Lγec/ν , the inset to Fig. 10(a) shows a
log-log plot of this quantity for 1 + 1D Clifford circuits, with
a fitted exponent of γec/ν ≈ 0.95(1) shown by the solid red
line, close to the value of γ /ν = 1 for 1D bulk percolation
[71] and far from the value γ1,1/ν = 1/3 for surface 2D per-
colation [76]. The analogous plot for 2 + 1D Clifford circuits
is shown in the inset to Fig. 10(b), where the fitted exponent
γec/ν ≈ 1.84(2) is close to the value γ /ν = 43/24 ≈ 1.79 for
bulk 2D percolation and far from the value γ1,1/ν ≈ 0.049 for
surface 3D percolation [76,77].

Figure 11 shows the average over circuit realizations of
the size smax of the largest steady-state cluster in each real-
ization, as a fraction of system size. This is a measure of
the surface fractal dimension d f of the infinite cluster since
by definition smax ∼ Ld f ∼ Ld−βs/ν . The inset to Fig. 11(a)
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FIG. 10. The average size s of all entanglement clusters in the
steady state for (a) 1 + 1D and (b) 2 + 1D Clifford circuits. The
insets show log-log plots of this quantity at p = pc, with the behavior
well described by the power law s ∼ Lγec/ν , where γec/ν = 0.95(1)
for 1 + 1D and γec/ν = 1.84(2) for 2 + 1D (power-law fits shown in
solid red).

shows a log-log plot of smax(pc)/Ld ∼ L−βec/ν for 1 + 1D
Clifford circuits, which is well described by the fitted expo-
nent βec/ν ≈ −0.009(2). This is close to the value β/ν = 0
for 1D bulk percolation and far from the exponent βs/ν = 1/3
for surface 2D percolation. In 2 + 1D, we find that there are
significant finite-size effects affecting the scaling of the largest
cluster size. For small system sizes, L � 32, the power-law
exponent is close to the bulk 2D percolation exponent β/ν =
5/48 ≈ 0.10, but this appears to be a finite-size effect. At
larger system sizes the exponent saturates to approximately
zero, with the fitted value βec/ν ≈ 0.00(2), which is very
far from the surface 3D percolation exponent of βs/ν ≈ 0.97
[77].

Finally, in Fig. 12 we show the distribution ns of all clus-
ter sizes s, which at p = pc and for 1 � s � Ld follows
a power-law ns ∼ s−τ (c0 + c1s−� + · · · ), with the leading-
order correction to scaling controlled by the exponent �.
A comment on this scaling form is necessary if we are to
make a comparison with 1D percolation. As noted above,
for 1D percolation the critical probability is pc = 1. This
has the consequence that, strictly at p = pc, there is only a
single cluster which covers the whole system, smax = L, so for
cluster sizes s < smax the cluster number ns = 0. Nonetheless,
one can meaningfully define the Fisher exponent τ by ana-
lyzing the behavior of ns for p < pc, where one finds τ = 2

FIG. 11. The average size smax of the largest entanglement cluster
in the steady state for (a) 1 + 1D and (b) 2 + 1D Clifford circuits.
The insets show log-log plots of this quantity at p = pc, with the
behavior well described by the power law smax(pc )/Ld ∼ L−βec/ν ,
where βec/ν = −0.009(2) for 1 + 1D and βec/ν = 0.00(2) for 2 +
1D (power-law fits shown in solid red). Note there are strong finite-
size effects in 2 + 1D, so there the fit is only to sizes L � 40.

for 1D percolation. However, a key difference between the
1 + 1D hybrid quantum circuits we study and 1D percolation
is that for the quantum circuits, 1 − pc ≈ 0.84 is different
from unity, so there is still randomness at the critical point,
and thus we can observe a full distribution of cluster sizes.
This provides justification for continuing to use the scaling
form ns ∼ s−τ (c0 + c1s−� + · · · ) to describe the cluster dis-
tribution function in 1 + 1D hybrid circuits.

In this case, it is harder to distinguish the behavior of
d- and (d + 1)-dimensional percolation, since the exponents
for the leading term, τ1D = 2, τ2D = 187/91 ≈ 2.05 [71] and
τ3D ≈ 2.19 [69], are all quite similar in magnitude. Indeed
both τ1D and τ2D provide a reasonable fit to our 1 + 1D data
[see Fig. 12(a)], and both τ2D and τ3D provide a reasonable fit
to our 2 + 1D data [see Fig. 12(b)]. An independent statisti-
cal bootstrap analysis [78] gives the exponents τ ≈ 2.04 and
� ≈ 0.15 in 1 + 1D and τ ≈ 1.98 and � ≈ 1.04 in 2 + 1D.
However, it is hard to call these values physically meaningful,
since allowing for variation in the scaling correction exponent
� provides considerable freedom to optimize the quality of
the fit. What is at least clear is that the Fisher exponent τ is
close to values predicted by percolation theory in low dimen-
sions, since our fitted values are far from the mean-field value
τ = 2.5.
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FIG. 12. Distribution function ns of the entanglement cluster
sizes s in the p = pc steady state for (a) 1 + 1D and (b) 2 + 1D Clif-
ford circuits, with system sizes L = 348 and L2 = 482, respectively.
For 1 � s � Ld , the probability distribution follows a power-law
distribution ns ∼ s−τ (c0 + c1s−�) with the leading-order correction
to scaling controlled by the exponent �. The dashed and dotted
lines show fits using the exponents from d- and (d + 1)-dimensional
percolation, respectively. The peak at large s corresponds to the
percolating cluster of size O(Ld ) present for p � pc.

We conclude this section by noting that the entanglement
cluster distribution is qualitatively similar to the stabilizer
length distribution (SLD) introduced by Li, Chen, and Fisher
in Ref. [19]. Indeed, both have a power-law tail and a volume-
law peak which disappears upon entering the area-law phase.
Furthermore, at criticality the exponent τ of the power-law
tail is close to 2 in both cases. In 1 + 1D the SLD has the
nice property that it can be used to calculate the entanglement
entropy itself—for example, a power-law exponent of 2 gives
rise to a subleading log L contribution to the entanglement
entropy. However, it is not clear how to generalize the SLD
to higher dimensions in a way that preserves this ability to
calculate the entanglement entropy from the analogous ‘sta-
bilizer volume distribution.’ From the entanglement cluster
distribution we analyze here, it is possible to calculate the
entanglement entropy provided one makes certain simplifying
assumptions about the fractal structure of the entanglement
clusters, but we defer further analysis of this link to future
work.

VI. DISCUSSION

We have provided an extensive study of the critical proper-
ties of the measurement-induced transition in 2 + 1D Clifford
circuits. Analogously to the situation in 1 + 1D, we have
found several bulk critical exponents which are within error
bars of those from 3D percolation, but there appear to be some

differences in surface behavior. We should note that these crit-
ical exponent estimates should be treated with some amount
of caution, especially for small system sizes, as conformal
field theories with zero central charge (like those appearing
in current theories of the 1 + 1D transition [25]) can have
logarithmic corrections to scaling [79,80], which could result
in systematic errors.

Nonetheless, focusing on this surface behavior, we studied
the critical scaling of entanglement clusters in the steady state
and found that—in contrast to models with a simple geometric
map to percolation—Clifford circuits have entanglement clus-
ter exponents which differ significantly from those of surface
percolation. We take this as evidence that in 1 + 1D and
2 + 1D the measurement-induced transition in qubit Clifford
circuits is in a distinct universality class from percolation.

Presumably the entanglement clusters are governed by sur-
face exponents of the as yet unknown (d + 1)-dimensional
statistical mechanical model applicable to Clifford circuits. It
remains a significant question why the bulk exponents of this
model look so much like those of percolation, even though
this system is far from where the percolation picture should
be applicable. There have been recent developments in the
machinery required to average over random Clifford unitaries
[81], which should prove helpful in developing this statistical
mechanical model. However, the reduced structure relative to
Haar-random unitaries makes it less obvious how to perform
the replica limit required to give the correct critical physics.

We have also shown the coincidence of the purification
transition and the entanglement transition in 2 + 1D. This
may at first be surprising, given that the entanglement tran-
sition concerns spatial correlations between equal-time wave
functions, while the purification transition concerns corre-
lations in time of a nonlocal quantity. The results in this
paper indicate that these two transitions may coincide in all
dimensions. One possible explanation for this could be the
conjecture of Ref. [26] that the nonunitary nature of the
dynamics results in the real time coordinate in d spatial di-
mensions acting as imaginary time in the corresponding (d +
1)-dimensional statistical mechanical model. In this sense
space and time may become symmetric, so the coincidence
of the entanglement transition and the purification transition
would be less surprising. The coincidence of these transitions
and our entanglement cluster analysis also suggest a way to
investigate connections with quantum error-correction—the
emergence of the critical entanglement cluster can be seen
as the germination of the quantum error-correcting code that
characterizes the stability of the volume-law phase.

Moving into higher dimensions raises several questions.
One interesting direction is that of ‘measurement-protected
order’ [28,29], analogous to the ‘localization-protected or-
der’ afforded by many-body localization (MBL) [82,83]. It
is tempting to view the area-law side of the measurement-
induced transition as a ‘trivial’ phase, but recent work has
demonstrated that there can be stable symmetry-protected
topological (SPT) order in the area-law phase, motivated
by comparisons with the area-law ground states of gapped
Hamiltonians. However, it is only in dimensions d � 2 that
true topological order can exist [84], so it would be interesting
to see if nontrivial topological order could be realized in the
steady states of 2 + 1D hybrid quantum circuits. There is also
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FIG. 13. (a) The steady-state values of I3/L as a function of (p − pc )L1/ν , where pc ≈ 0.303 and ν ≈ 1.07. The inset shows the uncollapsed
data. This dataset consists of 50 000 circuit realizations. (b) Analogous to Fig. 8(a), except performed at the alternative critical point pc ≈ 0.303
estimated from the data collapse of I3/L. The main plot shows the ‘optimal’ collapse at η = −0.57 as determined by minimizing the cost
function in Sec. B, but this clearly does not produce a good data collapse.

the question of which types of order can be stabilized by
measurements. There are significant constraints on possible
phases stabilized by MBL: non-Abelian symmetries are for-
bidden [85], for example, as well as chiral order [86]. It is
also possible that true MBL does not exist in d > 1 [87]. It
is an important topic for future research to determine which
restrictions, if any, are applicable to measurement-protected
order. This may allow for considerably more freedom in
the more general paradigm of understanding and classifying
nonequilibrium phases of matter.
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APPENDIX A: ALTERNATIVE SCALING FORMS FOR I3

In this section we detail some evidence against the hy-
pothesis that I3 ∼ O(L) at p = pc. Finite-size scaling of I3/L
results in the critical point pc ≈ 0.303 with ν ≈ 1.07 [see
Fig. 13(a)]. However, if we attempt to use this critical point
to estimate other critical exponents from standard finite-size
scaling arguments, we are unable to obtain a good data col-
lapse, indicating the absence of scaling behavior. For example,
to extract the anomalous scaling exponent η, we follow the
procedure detailed in Sec. IV, where η is chosen to optimize
the data collapse of the dynamics of the mutual information
between two ancilla qubits. Whereas this was possible for the
critical point pc ≈ 0.312 obtained from finite-size scaling of
I3 [see Fig. 8(a)], for the purported critical point pc ≈ 0.303
from I3/L scaling, there was not a value of η for which a
good data collapse was possible [see Fig. 13(b)]. Moreover,
the data collapse in Fig. 13(a) is of visibly worse quality than
the excellent collapse in Fig. 4. We also see in Sec. IV that

the purification transition seems to coincide with the critical
point pc ≈ 0.312 from I3 scaling, with a dynamical critical
exponent z ≈ 1 indicating the emergence of conformal sym-
metry. Given that these facts mirror the situation in 1 + 1D,
this provides further a posteriori justification for the scaling
I3 ∼ O(1) at criticality.

APPENDIX B: DETAILS OF THE FINITE-SIZE SCALING

To perform the data collapses, we use a cost function
ε(pc, ν) which uses linear interpolation to find the param-
eters (pc, ν) which cause the data to best collapse onto a
single curve [21,67]. In more detail, given a set of parame-
ters (pc, ν), for each value of p and L we create an x value
x := (p − pc)L1/ν , with a corresponding y value y(p, L) and
error d (p, L). We then sort the triples (xi, yi, di ) according to
their x values and evaluate the cost function

ε(pc, ν)

:= 1

n − 2

n−1∑
i=2

w(xi, yi, di|xi−1, yi−1, di−1, xi+1, yi+1, di+1),

(B1)

where w(xi, yi, di|xi−1, yi−1, di−1, xi+1, yi+1, di+1) is defined
as

w :=
(

y − ȳ

�(y − ȳ)

)2

, (B2)

ȳ := (xi+1 − xi )yi−1 − (xi−1 − xi )yi+1

xi+1 − xi−1
, (B3)

|�(y − ȳ)|2 := d2
i +

(
xi+1 − xi

xi+1 − xi−1

)2

d2
i−1

+
(

xi−1 − xi

xi+1 − xi−1

)2

d2
i+1. (B4)

The function w measures the deviation of a point from the
line obtained by a linear interpolation of its nearest neighbors,
weighted by the errors in each data point. Values of (pc, ν) for
which ε(pc, ν) ≈ 1 are considered optimal.

155111-12



MEASUREMENT-INDUCED CRITICALITY AND … PHYSICAL REVIEW B 104, 155111 (2021)

FIG. 14. (a) The logarithm of the cost function ε measuring the quality of the data collapse for different values of pc and ν, compared
between two possible indicators of the entanglement transition: the half-plane entanglement entropy S(L/2) and the tripartite information I3.
The black dots show the minimum of the cost function for each indicator. See the Appendix for a definition of the cost function ε. (b) A
linear-scale closeup of the cost function for the I3 data collapse around the estimated critical point, which is indicated by the black dot. The
white line indicates the boundary of the region for which the cost function is less than two times its minimum value; this is the region from
which the error bars are calculated. At the estimated critical point the cost function attains the value ε = 1.47, close to the optimal value ε ≈ 1.

As discussed in Sec. III, our finite-size scaling analysis
yields the correlation length exponent ν ≈ 0.85(9), which
is significantly different to that observed in Ref. [33]. We
attribute this to the fact that we extract ν by a data collapse
not of the half-plane entanglement, as in Ref. [33], but of
the tripartite information, which coincides for different sys-
tem sizes at the critical point and so provides a much more
accurate estimator of the critical point. To further this point,
we show in Fig. 14(a) a comparison of the cost function
ε(pc, ν) landscape in log scale between the half-plane entropy
S(L/2 × L) and the tripartite information I3. The entropy cost
function plot shows a clear ‘ridge’ region where ε is roughly
constant, spanning the whole range of values of pc and with
a large variation of ν along the ridge (see also Fig. 2 in the
Erratum of Ref. [33]). On the other hand, the I3 cost function
plot is much more localized around the estimated critical pa-
rameters, reaching a smaller value of ε than the entropy plot.
This localization is less obvious viewed in log scale, but the
log was necessary for a meaningful visual comparison of the
cost function plots for the two indicators. Figure 14(b) shows
a linear-scale version of the cost function plot for I3, which

allows for a clearer visualization of the localization of the cost
function minimum. The estimated critical point is indicated by
the large black dot, while the surrounding white line gives the
boundary of the region where the cost function is less than two
times its minimum value, from which we calculate the error
bars in pc and ν. Notice that at the estimated critical point, the
cost function reaches a value ε = 1.47 close to 1, indicating a
good-quality data collapse.

Furthermore, a comment on the used system sizes is nec-
essary. One could argue that the four subsystems used to
calculate I3 have the vertical dimension Ly � 8, which may be
small enough to exhibit substantial finite-size effects, hinder-
ing our ability to properly locate the critical point. However,
I3 in 1 + 1D circuits shows almost no finite-size drift at criti-
cality already for systems of size L � 16 [21] (subsystems of
size �4). Using our data from Fig. 4, one can assess that the
crossings of I3 exhibit no statistically significant drift above
roughly L � 16, strongly implying little to no finite-size ef-
fects in I3 at criticality for the system sizes considered. We
also note that the data collapse is of exceptional quality, again
strongly ruling out any substantial finite-size drifts.

FIG. 15. The dynamics of the half-plane von Neumann entropy at the critical point pc = 0.312 of the 2 + 1D Clifford model. (a) The
data are not linear on a log scale, indicating that the entanglement growth is not logarithmic in time (system size is L = 92). (b) A plot of
S(t, L/2)/L as a function of 1/t , where the linear trend provides support for the scaling S(t, L) ∼ L(1 − a/t ). (c) Scaling collapse of S(t ) − bL
vs t/L, with b = 0.685 producing the best fit.
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FIG. 16. The mean cluster size s and largest cluster size smax/Ld

for the projective transverse field Ising model in 1 + 1D (left column)
and 2 + 1D (right column). These should scale as s ∼ Lγ1,1/ν and
smax/Ld ∼ L−βs/ν , respectively. The critical exponents are all close to
the corresponding surface critical exponents of percolation in (d + 1)
dimensions, with the exception of the mean cluster size in 2 + 1D,
as we discuss in the main text.

APPENDIX C: CRITICAL ENTANGLEMENT DYNAMICS

In Fig. 15 we plot the dynamics of the half-plane von
Neumann entropy at the 2 + 1D critical point pc = 0.312.
Because the entanglement is relatively small at the critical
point, we are able to simulate a large system with linear size
L = 92. In Fig. 15(a) the time axis is on a logarithmic scale,
and we can see that the data do not appear linear on this
scale, thereby demonstrating that the entanglement growth is
not logarithmic in time. Note that we are plotting here the
window-averaged entropy, averaged over a window of four
timesteps, which is why there is not data at every timestep.
This is to remove a periodicity effect related to how often the
Clifford gates cross the cut used to define the entanglement
entropy, as discussed in Sec. II B A.

As we discuss in Sec. III, we instead argue that the entan-
glement growth scales as S(t, L) = bL(1 − a/t ) in 2 + 1D,
where a, b are some O(1) constants. Evidence for this is
shown in Fig. 15(b), where the data appears approximately
linear when plotted as a function of 1/t . Note that the data
appears linear on this scale, with the straight lines showing
linear fits. The gradients and y intercepts of these fits are

approximately the same for different system sizes, supporting
the idea that a and b are O(1) constants. Note that we only
expect this scaling to hold for intermediate times, so there are
some deviations from this behavior at early times. Finally, in
Fig. 15(c), we show a data collapse of S(t ) − bL vs t/L with
b = 0.685, supporting the scaling ansatz S(t ) − bL ∼ f (t/L)
consistent with a dynamical critical exponent of z = 1.

APPENDIX D: ENTANGLEMENT CLUSTERS IN THE
PROJECTIVE TRANSVERSE FIELD ISING MODEL

The projective transverse field Ising model (PTFIM) is a
measurement-only model exhibiting an entanglement transi-
tion which is known to be in the percolation universality class
[41]. Conveniently, it also only involves Clifford operations,
so can be simulated using the graph-state framework and
therefore provides a useful testbed for the scaling properties
of the entanglement clusters we analyze in Sec. V.

Referring the reader to Ref. [41] for the full details, the
PTFIM is defined as follows. We define the model on a hyper-
cubic lattice for simplicity. Each site of the lattice contains a
spin. The model involves two types of measurements: onsite
measurements of σ x and measurements of σ zσ z for spins
connected by an edge. The system is initialized in the prod-
uct state |+〉⊗N , where |+〉 = (|0〉 + |1〉)/

√
2. Then, at each

timestep, for each site i assign the variable xi = 1 with proba-
bility p and xi = 0 otherwise, and for each edge e connecting
spins i and j, assign the variable ze = 1 with probability 1 − p
and ze = 0 otherwise. These variables determine the sites and
edges on which the observables σ x

i and σ z
i σ z

j are measured.
The edge observables are measured first, followed by the
site observables. On a d-dimensional hypercubic lattice, this
process maps onto bond percolation on a (d + 1)-dimensional
hypercubic lattice.

As previously, we focus on two properties of the surface
clusters: the largest cluster size smax and the mean cluster
size s. In a system with d spatial dimensions and linear size
L, these should scale as smax/Ld ∼ L−βs/ν and s ∼ Lγ1,1/ν ,
respectively. Our results for the PTFIM in 1 + 1D and 2 + 1D
are shown in the left and right columns of Fig. 16, where we
perform simulations up to L = 800 and L = 128, respectively.
In 1 + 1D, the resulting exponents for the entanglement clus-
ters are γec/ν = 0.33(1) for the mean cluster size and βec/ν =
0.332(2) for the largest cluster size. These are very close to the

FIG. 17. The mean surface cluster size s for the site percolation on a 2D square lattice (left) and a 3D simple cubic lattice (right). Blue line
is a fit to s = aLγ1,1/ν for the largest system sizes, while the red line includes a constant correction to scaling, s = aLγ1,1/ν + b. Corresponding
estimates of γ1,1/ν are given in the legend.
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corresponding surface exponents for 2D percolation, γ1,1/ν =
1/3 and βs/ν = 1/3. In 2 + 1D, the extracted exponent for
the largest cluster size is βec/ν = 0.973(3), which is very
close to the exponent βs/ν ≈ 0.9754(4) for 3D percolation
[77]. For the mean cluster size in 2 + 1D, the situation is less
clear. We extract an exponent for the entanglement clusters
of γec/ν = 0.14(2). The exponent γ1,1 does not appear to
be well documented for 3D percolation, however, from the
scaling relation γ1,1/ν = d − 1 − 2βs/ν [76,88] we estimate
the value γ1,1/ν = 0.0492(8), which is not compatible within
error bars of the exponent γec/ν. Nonetheless, it is very likely
that there are large finite size effects for this exponent—we
have performed percolation simulations (see Fig. 17) to re-
produce the quoted value for γ1,1/ν and found that we had to

be very careful with the subleading corrections to scaling in
order to get the correct exponent, even up to surprisingly large
system sizes (L � 640). Without accounting for the correc-
tions, we obtain a larger exponent, γ1,1/ν ∼ 0.206(2), while
including a constant correction gives γ1,1/ν ∼ 0.049(10), a
value close to the expectation from the scaling relation. For
the 2 + 1D Clifford circuit we have simulated up to L = 128
at criticality, but it is possible that there are still significant
finite size corrections to γec/ν that are not captured by the
statistical error bars we quote here. It, however, needs to be
noted that there are relatively large error bars on s for PTFIM
in 2 + 1D which could conceal finite size effects, while the
corresponding results for Clifford circuit have smaller error
bars and seem to exhibit small finite size effects.
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